Tuneable magnetic patterning of paramagnetic Fe<inf>60</inf>Al<inf>40</inf> (at.%) by consecutive ion irradiation through pre-lithographed shadow masks

A. Varea, E. Menéndez, J. Montserrat, E. Lora-Tamayo, A. Weber, L. J. Heyderman, S. C. Deevi, K. V. Rao, S. Suriñach, M. D. Baró, K. S. Buchanan, J. Nogués, J. Sort

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)

Abstract

Arrays of ferromagnetic circular dots (with diameters ranging from 225 to 420 nm) have been prepared at the surface of atomically ordered paramagnetic Fe60Al40 (at.%) sheets by means of ion irradiation through prelithographed poly(methyl methacrylate) (PMMA) masks. The cumulative effects of consecutive ion irradiation (using Ar+ ions at 1.2 × 10 14 ions/cm2 with 10, 13, 16, 19 and 22 keV incident energies) on the properties of the patterned dots have been investigated. A progressive increase in the overall magneto-optical Kerr signal is observed for increasingly larger irradiation energies, an effect which is ascribed to accumulation of atomic disorder. Conversely, the coercivity, HC, shows a maximum after irradiating at 16-19 keV and it decreases for larger irradiation energies. Such a decrease in HC is ascribed to the formation of vortex states during magnetization reversal, in agreement with results obtained from micromagnetic simulations. At the same time, the PMMA layer, with an initial thickness of 90 nm, becomes progressively thinned during the successive irradiation processes. After irradiation at 22 keV, the remaining PMMA layer is too thin to stop the incoming ions and, consequently, ferromagnetism starts to be generated underneath the nominally masked areas. These experimental results are in agreement with calculations using the Monte-Carlo simulation Stopping Range of Ions in Matter software, which show that for exceedingly thin PMMA layers Ar ions can reach the Fe 60Al40 layer despite the presence of the mask. © 2011 American Institute of Physics.
Original languageEnglish
Article number093918
JournalJournal of Applied Physics
Volume109
DOIs
Publication statusPublished - 1 May 2011

Fingerprint Dive into the research topics of 'Tuneable magnetic patterning of paramagnetic Fe<inf>60</inf>Al<inf>40</inf> (at.%) by consecutive ion irradiation through pre-lithographed shadow masks'. Together they form a unique fingerprint.

Cite this