Abstract
The restricted three-body problem is considered for values of the Jacobi constant C near the value C2 associated to the Euler critical point L2. A Lyapunov family of periodic orbits near L2, the so-called family (c), is born for C = C2 and exists for values of C less than C2. These periodic orbits are hyperbolic. The corresponding invariant manifolds meet transversally along homoclinic orbits. In this paper the variation of the transversality is analyzed as a function of the Jacobi constant C and of the mass parameter μ. Asymptotical expressions of the invariant manifolds for C ≲ C2 and μ ≳ 0 are found. Several numerical experiments provide accurate information for the manifolds and a good agreement is found with the asymptotical expressions. Symbolic dynamic techniques are used to show the existence of a large class of motions. In particular the existence of orbits passing in a random way (in a given sense) from the region near one primary to the region near the other is proved. © 1985.
Original language | English |
---|---|
Pages (from-to) | 104-156 |
Journal | Journal of Differential Equations |
Volume | 58 |
Issue number | 1 |
DOIs | |
Publication status | Published - 15 Jun 1985 |