TY - JOUR
T1 - Thermodynamics, kinetics, and dynamics of the two alternative aniomesolytic fragmentations of C-O bonds: An electrochemical and theoretical study
AU - Pisano, Luisa
AU - Farriol, Maria
AU - Asensio, Xavier
AU - Gallardo, Iluminada
AU - González-Lafont, Angels
AU - Lluch, José M.
AU - Marquet, Jordi
PY - 2002/5/1
Y1 - 2002/5/1
N2 - Fragmentation reactions of radical anions (mesolytic cleavages) of cyanobenzyl alkyl ethers (intramolecular dissociative electron transfer, heterolytic cleavages) have been studied electrochemically. The intrinsic barriers for the processes have been established from the experimental thermodynamic and kinetic parameters. These values are more than 3 kcal/mol lower as an average than the related homolytic mesolytic fragmentations of radical anions of 4-cyanophenyl ethers. In the particular case of isomers 4-cyanobenzyl phenyl ether and 4-cyanophenyl benzyl ether, the difference in intrinsic barriers amounts to 5.5 kcal/mol, and this produces an energetic crossing where the thermodynamically more favorable process (homolytic) is the kinetically slower one. The fundamental reasons for this behavior have been established by means of theoretical calculations within the density functional theory framework, showing that, in this case, the factors that determine the kinetics are clearly different (mainly present in the transition state) from those that determine the thermodynamics and they are not related to the regioconservation of the spin density ("spin regioconservation principle"). Our theoretical results reproduce quite well the experimental energetic difference of barriers and demonstrate the main structural origin of the difference.
AB - Fragmentation reactions of radical anions (mesolytic cleavages) of cyanobenzyl alkyl ethers (intramolecular dissociative electron transfer, heterolytic cleavages) have been studied electrochemically. The intrinsic barriers for the processes have been established from the experimental thermodynamic and kinetic parameters. These values are more than 3 kcal/mol lower as an average than the related homolytic mesolytic fragmentations of radical anions of 4-cyanophenyl ethers. In the particular case of isomers 4-cyanobenzyl phenyl ether and 4-cyanophenyl benzyl ether, the difference in intrinsic barriers amounts to 5.5 kcal/mol, and this produces an energetic crossing where the thermodynamically more favorable process (homolytic) is the kinetically slower one. The fundamental reasons for this behavior have been established by means of theoretical calculations within the density functional theory framework, showing that, in this case, the factors that determine the kinetics are clearly different (mainly present in the transition state) from those that determine the thermodynamics and they are not related to the regioconservation of the spin density ("spin regioconservation principle"). Our theoretical results reproduce quite well the experimental energetic difference of barriers and demonstrate the main structural origin of the difference.
U2 - 10.1021/ja012444g
DO - 10.1021/ja012444g
M3 - Article
VL - 124
SP - 4708
EP - 4715
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 17
ER -