TY - JOUR

T1 - Thermodynamic variables in the context of a nonequilibrium statistical ensemble approach

AU - Luzzi, Roberto

AU - Vasconcellos, Áurea R.

AU - Jou, David

AU - Casas-Vázquez, José

PY - 1997/11/8

Y1 - 1997/11/8

N2 - We consider the question of the definition of thermodynamic-like variables in the context of a statistical thermodynamics, which is a large generalization of Gibbs statistical thermostatics and linear and local-equilibrium classical irreversible thermodynamics. It is based on a nonequilibrium ensemble approach known as the nonequilibrium statistical operator method. Some of these quasithermodynamic variables are characteristic of the nonequilibrium state and go to zero in the limit of local or global equilibrium, but others go over the thermodynamic variables that are present in such a limit. We consider in particular temperature-like variables for the different subsystems of the sample. For illustration we apply the theory to the study of optical properties of highly photoexcited plasma in semiconductors, following a good agreement between theory and experimental data. It is shown that high-resolution spectroscopy provides an excellent experimental testing ground for corroboration of the theoretical concepts, and a quite appropriate way for characterizing and measuring nonequilibrium thermodynamic-like variables. © 1997 American Institute of Physics.

AB - We consider the question of the definition of thermodynamic-like variables in the context of a statistical thermodynamics, which is a large generalization of Gibbs statistical thermostatics and linear and local-equilibrium classical irreversible thermodynamics. It is based on a nonequilibrium ensemble approach known as the nonequilibrium statistical operator method. Some of these quasithermodynamic variables are characteristic of the nonequilibrium state and go to zero in the limit of local or global equilibrium, but others go over the thermodynamic variables that are present in such a limit. We consider in particular temperature-like variables for the different subsystems of the sample. For illustration we apply the theory to the study of optical properties of highly photoexcited plasma in semiconductors, following a good agreement between theory and experimental data. It is shown that high-resolution spectroscopy provides an excellent experimental testing ground for corroboration of the theoretical concepts, and a quite appropriate way for characterizing and measuring nonequilibrium thermodynamic-like variables. © 1997 American Institute of Physics.

U2 - https://doi.org/10.1063/1.474976

DO - https://doi.org/10.1063/1.474976

M3 - Article

VL - 107

SP - 7383

EP - 7396

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

ER -