Thermodynamic analysis of helix-engineered forms of the activation domain of human procarboxypeptidase A2

Ana M. Fernández, Virtudes Villegas, Jose C. Martínez, Nico A.J. van Nuland, Francisco Conejero-Lara, Francesc X. Avilés, Luis Serrano, Vladimir V. Filimonov, Pedro L. Mateo

Research output: Contribution to journalArticleResearchpeer-review

12 Citations (Scopus)

Abstract

Thermodynamic characterization of the activation domain of human procarboxypeptidase A2, ADA2h, and its helix-engineered mutants was carried out by differential scanning calorimetry. The mutants were engineered by changing residues in the exposed face of the two α helices in order to increase their stability. At neutral and alkaline pH the three mutants, α-helix 1 (M1), α-helix 2 (M2) and α-helix 1 and α-helix 2 (DM), were more stable than the wild-type domain, in the order DM, M2, M1 and wild-type. Under these conditions the CD and NMR spectra of all the variants are very similar, indicating that this increase in stability is not the result of gross structural changes. Calorimetric analysis shows that the stabilizing effect of mutating the water-exposed surfaces of the helices seems to be mainly entropic, because the mutations do not change the enthalpy or the increase in heat capacity of denaturation. The unfolding behavior of all variants changes under acidic conditions: whereas wild-type and M1 have a strong tendency to aggregate, giving rise to a β conformation upon unfolding, M2 and DM unfold reversibly, M2 being more stable than DM. CD and NMR experiments at pH 3.0 suggest that a region involving residues of the second and third β strands as well as part of α-helix 1 changes its conformation. It seems that the enhanced stability of the altered conformation of M2 and DM reduces the aggregation tendency of ADA2h at acidic pH.
Original languageEnglish
Pages (from-to)5891-5899
JournalEuropean Journal of Biochemistry
Volume267
Issue number19
DOIs
Publication statusPublished - 1 Jan 2000

Keywords

  • Activation domain
  • Calorimetry
  • Denaturation
  • Folding
  • Stability

Fingerprint

Dive into the research topics of 'Thermodynamic analysis of helix-engineered forms of the activation domain of human procarboxypeptidase A2'. Together they form a unique fingerprint.

Cite this