TY - JOUR
T1 - Theoretical Study of the Arachidonic Acid Conversion into Leukotriene A4 Catalyzed by Human 5-Lipoxygenase: Hydroperoxidation and Epoxidation Mechanisms and Arachidonic Acid Active Site Access
AU - Cruz, Alejandro
AU - González-Lafont, Àngels
AU - Lluch, José M.
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2024/1/19
Y1 - 2024/1/19
N2 - Inflammation is at the base of many different diseases. Leukotrienes (LTs) are pro-inflammatory mediators derived from arachidonic acid (AA), which play significant roles in acute inflammation. Lipoxins are specialized pro-resolving mediators (SPMs), also formed from AA, that promote the resolution of acute inflammation. However, if resolution fails, chronic inflammatory processes might develop. The enzyme human-5-lipoxygenase (5-LOX) catalyzes the biosynthesis of leukotriene named LTA4 but also intervenes in the formation of the lipoxin LXA4. These two biological functions have made the 5-LOX isoform a current target for pharmaceutical investigations in several inflammatory-based diseases searching for inhibitors that block the leukotriene reaction pathway but not lipoxin’s formation. However, the development of those selective inhibitors has been hampered by the lack of a crystal structure of human 5-LOX. In this work, we have built a complete solvated model of the human-5-LOX: AA Michaelis complex using, as initial coordinates, the human 5-LOX structure from the AlphaFold protein structure database. We aim to analyze at the molecular level the overall catalytic mechanism of 5-LOX that first converts AA into 5(S)-HpETE through a hydroperoxidation reaction and, second, transforms this hydroperoxide into LTA4 following an epoxidation process. Methodologically, we have performed molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The free energy profiles for AA entrance into the 5-LOX’s binding cavity have been calculated by steered molecular dynamics. This detailed molecular information can explain human-5-LOX’s in vitro activity (without the presence of the membrane-embedded 5-lipoxygenase-activating protein) and help to design selective inhibitors favoring inflammation resolution
AB - Inflammation is at the base of many different diseases. Leukotrienes (LTs) are pro-inflammatory mediators derived from arachidonic acid (AA), which play significant roles in acute inflammation. Lipoxins are specialized pro-resolving mediators (SPMs), also formed from AA, that promote the resolution of acute inflammation. However, if resolution fails, chronic inflammatory processes might develop. The enzyme human-5-lipoxygenase (5-LOX) catalyzes the biosynthesis of leukotriene named LTA4 but also intervenes in the formation of the lipoxin LXA4. These two biological functions have made the 5-LOX isoform a current target for pharmaceutical investigations in several inflammatory-based diseases searching for inhibitors that block the leukotriene reaction pathway but not lipoxin’s formation. However, the development of those selective inhibitors has been hampered by the lack of a crystal structure of human 5-LOX. In this work, we have built a complete solvated model of the human-5-LOX: AA Michaelis complex using, as initial coordinates, the human 5-LOX structure from the AlphaFold protein structure database. We aim to analyze at the molecular level the overall catalytic mechanism of 5-LOX that first converts AA into 5(S)-HpETE through a hydroperoxidation reaction and, second, transforms this hydroperoxide into LTA4 following an epoxidation process. Methodologically, we have performed molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The free energy profiles for AA entrance into the 5-LOX’s binding cavity have been calculated by steered molecular dynamics. This detailed molecular information can explain human-5-LOX’s in vitro activity (without the presence of the membrane-embedded 5-lipoxygenase-activating protein) and help to design selective inhibitors favoring inflammation resolution
KW - arachidonic acid active site access
KW - epoxidation mechanism
KW - human 5-lipoxygenase
KW - leukotriene A
KW - quantum mechanics/molecular mechanics calculations
KW - steered molecular dynamics simulations
UR - http://www.scopus.com/inward/record.url?scp=85181827446&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/29c8c077-742c-3cc5-8baa-65686ed3de0c/
U2 - 10.1021/acscatal.3c04954
DO - 10.1021/acscatal.3c04954
M3 - Artículo
SN - 2155-5435
VL - 14
SP - 637
EP - 656
JO - ACS catalysis
JF - ACS catalysis
IS - 2
ER -