Theoretical modeling of enzyme catalytic power: Analysis of "cratic" and electrostatic factors in catechol O-methyltransferase

Maite Roca, Sergio Martí, Juan Andrés, Vicent Moliner, Iñaki Tuñón, Juan Bertrán, Ian H. Williams

Research output: Contribution to journalArticleResearchpeer-review

78 Citations (Scopus)


A comparative theoretical study of a bimolecular reaction in aqueous solution and catalyzed by the enzyme catechol O-methyltransferase (COMT) has been carried out by a combination of two hybrid QM/MM techniques: statistical simulation methods and internal energy minimizations. In contrast to previous studies by other workers, we have located and characterized transition structures for the reaction in the enzyme active site, in water and in a vacuum, and our potential of mean force calculations are based upon reaction coordinates obtained from features of the potential energy surfaces in the condensed media, not from the gas phase. The AM1/CHARMM calculated free energy of activation for the reaction of S-adenosyl methionine (SAM) with catecholate catalyzed by COMT is 15 kcal mol-1 lower the AM1/TIP3P free-energy barrier for the reaction of the trimethylsulfonium cation with the catecholate anion in water at 300 K, in agreement with previous estimates. The thermodynamically preferred form of the reactants in the uncatalyzed model reaction in water is a solvent-separated ion pair (SSIP). Conversion of the SSIP into a contact ion pair, with a structure resembling that of the Michaelis complex (MC) for the reaction in the COMT active site, is unfavorable by 7 kcal mol-1, largely due to reorganization of the solvent. We have considered alternative ways to estimate the so-called "cratic" free energy for bringing the reactant species together in the correct orientation for reaction but conclude that direct evaluation of the free energy of association by means of molecular dynamics simulation with a simple standard-state correction is probably the best approach. The latter correction allows for the fact that the size of the unit cell employed with the periodic boundary simulations does not correspond to the standard state concentration of 1 M. Consideration of MC-like species allows a helpful decomposition of the catalytic effect into preorganization and reorganization phases. In the preorganization phase, the substrates are brought together into the MC-like species, either in water or in the enzyme active site. In the reorganization phase, the roles of the enzymic and aqueous environments may be compared directly because reorganization of the substrate is about the same in both cases. Analysis of the electric field along the reaction coordinate demonstrates that in water the TS is destabilized with respect to the MC-like species because the polarity of the solute diminishes and consequently the reaction field is also decreased. In the enzyme, the electric field is mainly a permanent field and consequently there is only a small reorganization of the environment. Therefore, destabilization of the TS is lower than in solution, and the activation barrier is smaller.
Original languageEnglish
Pages (from-to)7726-7737
JournalJournal of the American Chemical Society
Issue number25
Publication statusPublished - 25 Jun 2003


Dive into the research topics of 'Theoretical modeling of enzyme catalytic power: Analysis of "cratic" and electrostatic factors in catechol O-methyltransferase'. Together they form a unique fingerprint.

Cite this