Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: A bifurcation analysis

Anel Nurtay, Matthew G. Hennessy, Josep Sardanyés, Lluís Alsedà, Santiago F. Elena

Research output: Contribution to journalArticleResearch

3 Citations (Scopus)

Abstract

© 2019 The Authors. We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero- Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
Original languageEnglish
Article number181179
JournalRoyal Society Open Science
Volume6
DOIs
Publication statusPublished - 1 Jan 2019

Keywords

  • Bifurcations
  • Epidemiology
  • Infection dynamics
  • Mathematical biology
  • Virus evolution

Fingerprint Dive into the research topics of 'Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: A bifurcation analysis'. Together they form a unique fingerprint.

Cite this