The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice

Sílvia Castany, Mireia Carcolé, Sergi Leánez, Olga Pol

    Research output: Contribution to journalArticleResearchpeer-review

    12 Citations (Scopus)

    Abstract

    © 2016, Springer-Verlag Berlin Heidelberg. Rationale: The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown. Objectives and methods: In streptozotocin (STZ)-induced diabetic mice, the anti-allodynic and anti-hyperalgesic effects of the subcutaneous administration of JWH-015 alone or combined with the intraperitoneal administration of a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer (CORM-2)) or an HO-1 inducer compound (cobalt protoporphyrin IX (CoPP)) at 10 mg/kg were evaluated. Reversion of JWH-015 anti-nociceptive effects by the administration of an HO-1 inhibitor (tin protoporphyrin IX (SnPP)) and a CB2R antagonist (AM630) was also evaluated. Furthermore, the protein levels of HO-1, neuronal nitric oxide synthase (NOS1), and CB2R in diabetic mice treated with CORM-2 and CoPP alone or combined with JWH-015 were also assessed. Results: The administration of JWH-015 dose dependently inhibited hypersensitivity induced by diabetes. The effects of JWH-015 were enhanced by their coadministration with CORM-2 or CoPP and reversed by SnPP or AM630. The increased protein levels of HO-1 induced by CORM-2 and CoPP treatments were further enhanced in JWH-015-treated mice. All treatments similarly enhanced the peripheral expression of CB2R and avoided the spinal cord over-expression of NOS1 induced by diabetes. Conclusions: The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.
    Original languageEnglish
    Pages (from-to)2209-2219
    JournalPsychopharmacology
    Volume233
    Issue number11
    DOIs
    Publication statusPublished - 1 Jun 2016

    Keywords

    • Analgesia
    • Cannabinoid receptors
    • Carbon monoxide
    • Diabetes
    • Heme oxygenases
    • Nitric oxide synthases
    • Painful diabetic neuropathy

    Fingerprint Dive into the research topics of 'The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice'. Together they form a unique fingerprint.

    Cite this