Abstract
© 2014 Elsevier Masson SAS. We prove the nonexistence of Liouvillian first integrals for the generalized Liénard polynomial differential systems of the form x'=y, y'=-g(x)-f(x)y, where g(x) and f(x) are arbitrary polynomials such that degg=degf+1.
Original language | English |
---|---|
Pages (from-to) | 214-227 |
Journal | Bulletin des Sciences Mathematiques |
Volume | 139 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
Keywords
- Darboux polynomials
- Exponential factors
- Liouvillian first integrals
- Liénard polynomial differential systems