TextProposals: A text-specific selective search algorithm for word spotting in the wild

Lluís Gómez*, Dimosthenis Karatzas

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

82 Citations (Scopus)


Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way. Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.

Original languageEnglish
Pages (from-to)60-74
Number of pages15
JournalPattern Recognition
Publication statusPublished - Oct 2017


  • Grouping
  • Object proposals
  • Perceptual organization
  • Scene text


Dive into the research topics of 'TextProposals: A text-specific selective search algorithm for word spotting in the wild'. Together they form a unique fingerprint.

Cite this