TY - JOUR
T1 - Tetracycline resistance transmission in Campylobacter is promoted at temperatures resembling the avian reservoir
AU - Navarro Risueño, Ferran
AU - Cuevas-Ferrando, E.
AU - Guirado, Pedro
AU - Miró, Elisenda
AU - Iglesias Torrens, Yaidelys
AU - Alioto, Tyler Scott
AU - Gómez-Garrido, Jessica
AU - Madrid Xufré, Cristina
AU - Balsalobre Parra, Carlos
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/5
Y1 - 2020/5
N2 - Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 °C, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 °C. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni.
AB - Campylobacter is the causal agent of campylobacteriosis in humans, a self-limiting gastroenteritis. Campylobacteriosis is a zoonosis, commonly transmitted from contaminated chicken meat by either direct consumption or cross contamination during food manipulation. Presence of plasmids encoding for resistance to antibiotics such as tetracycline is common among Campylobacter isolates. In this report, we studied the effect of the temperature in the conjugation frequency of several tet(O) carrying plasmids, providing tetracycline resistance to the recipient cells. The conjugation frequency from donor cells carrying three previously characterized plasmids (pCjA13, pCjA9 and pTet) and from two clinical isolates was determined. Two temperatures, 37 and 42 °C, mimicking the conditions encountered by C. jejuni in the human and broiler chicken gastrointestinal tracts, respectively, were assessed. Our results clearly indicate that the conjugation process is promoted at high temperature. Accordingly, the transcriptional expression of some putative conjugative apparatus genes is thermoregulated, being induced at 42 °C. The two plasmids present in the clinical isolates were sequenced and assembled. Both plasmids are highly related among them and to the pTet plasmid. The high identity of the genes putatively involved in the conjugation process among the plasmids is in agreement with the similar behavior regarding the temperature dependency of the conjugative process. This report suggest that conjugation of plasmids carrying antibiotic resistance genes occurs preferentially at temperatures that resemble the gastrointestinal tract of birds, the main reservoir of C. jejuni.
KW - Campylobacter
KW - Plasmid conjugation
KW - Temperature regulation
KW - Tetracycline resistance
UR - http://www.scopus.com/inward/record.url?scp=85082925194&partnerID=8YFLogxK
U2 - 10.1016/j.vetmic.2020.108652
DO - 10.1016/j.vetmic.2020.108652
M3 - Article
C2 - 32402330
AN - SCOPUS:85082925194
SN - 0378-1135
VL - 244
JO - Veterinary Microbiology
JF - Veterinary Microbiology
M1 - 108652
ER -