Testing a quantum heat pump with a two-level spin

Luis A. Correa, Mohammad Mehboudi

    Research output: Contribution to journalArticleResearchpeer-review

    4 Citations (Scopus)

    Abstract

    © 2016 by the authors. Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a "quantum heat pump". Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: They are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external "black-box" testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its "contact transitions". The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.
    Original languageEnglish
    Article number141
    JournalEntropy
    Volume18
    Issue number4
    DOIs
    Publication statusPublished - 1 Apr 2016

    Keywords

    • Open quantum systems
    • Thermal engineering
    • Thermodynamics

    Fingerprint Dive into the research topics of 'Testing a quantum heat pump with a two-level spin'. Together they form a unique fingerprint.

    Cite this