Abstract
Three enzymatic routes toward γ-hydroxy-α-amino acids by tandem aldol addition-transamination one-pot two-step reactions are reported. The approaches feature an enantioselective aldol addition of pyruvate to various nonaromatic aldehydes catalyzed by trans-o-hydroxybenzylidene pyruvate hydratase-aldolase (HBPA) from Pseudomonas putida. This affords chiral 4-hydroxy-2-oxo acids, which were subsequently enantioselectively aminated using S-selective transaminases. Three transamination processes were investigated involving different amine donors and transaminases: (i) l-Ala as an amine donor with pyruvate recycling, (ii) a benzylamine donor using benzaldehyde lyase from Pseudomonas fluorescens Biovar I (BAL) to transform the benzaldehyde formed into benzoin, minimizing equilibrium limitations, and (iii) l-Glu as an amine donor with a double cascade comprising branched-chain α-amino acid aminotransferase (BCAT) and aspartate amino transferase (AspAT), both from E. coli, using l-Asp as a substrate to regenerate l-Glu. The γ-hydroxy-α-amino acids thus obtained were transformed into chiral α-amino-γ-butyrolactones, structural motifs found in many biologically active compounds and valuable intermediates for the synthesis of pharmaceutical agents.
Original language | English |
---|---|
Pages (from-to) | 4660-4669 |
Number of pages | 10 |
Journal | ACS catalysis |
Volume | 11 |
Issue number | 8 |
DOIs | |
Publication status | Published - 16 Apr 2021 |
Keywords
- 2-oxoacid aldolase
- aldol addition
- biocatalysis
- reductive amination
- transaminases
- γ-hydroxy-α-amino acids
Fingerprint
Dive into the research topics of 'Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition-Transamination Reactions'. Together they form a unique fingerprint.Datasets
-
CCDC 2055192: Experimental Crystal Structure Determination
Moreno, C. J. (Contributor), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Creator), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella Coll, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zljb, http://www.ccdc.cam.ac.uk/services/structure_request%3Fid=doi:10.5517/ccdc.csd.cc26zljb&sid=DataCite
Dataset
-
CCDC 2055193: Experimental Crystal Structure Determination
Moreno, C. J. (Contributor), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Creator), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella Coll, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zlkc, http://www.ccdc.cam.ac.uk/services/structure_request%3Fid=doi:10.5517/ccdc.csd.cc26zlkc&sid=DataCite
Dataset
-
CCDC 2055194: Experimental Crystal Structure Determination
Moreno, C. J. (Creator), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Contributor), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella Coll, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zlld, https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc26zlld&sid=DataCite
Dataset