Abstract
Three enzymatic routes toward γ-hydroxy-α-amino acids by tandem aldol addition-transamination one-pot two-step reactions are reported. The approaches feature an enantioselective aldol addition of pyruvate to various nonaromatic aldehydes catalyzed by trans-o-hydroxybenzylidene pyruvate hydratase-aldolase (HBPA) from Pseudomonas putida. This affords chiral 4-hydroxy-2-oxo acids, which were subsequently enantioselectively aminated using S-selective transaminases. Three transamination processes were investigated involving different amine donors and transaminases: (i) l-Ala as an amine donor with pyruvate recycling, (ii) a benzylamine donor using benzaldehyde lyase from Pseudomonas fluorescens Biovar I (BAL) to transform the benzaldehyde formed into benzoin, minimizing equilibrium limitations, and (iii) l-Glu as an amine donor with a double cascade comprising branched-chain α-amino acid aminotransferase (BCAT) and aspartate amino transferase (AspAT), both from E. coli, using l-Asp as a substrate to regenerate l-Glu. The γ-hydroxy-α-amino acids thus obtained were transformed into chiral α-amino-γ-butyrolactones, structural motifs found in many biologically active compounds and valuable intermediates for the synthesis of pharmaceutical agents.
Original language | English |
---|---|
Pages (from-to) | 4660-4669 |
Number of pages | 10 |
Journal | ACS catalysis |
Volume | 11 |
Issue number | 8 |
DOIs | |
Publication status | Published - 16 Apr 2021 |
Keywords
- 2-oxoacid aldolase
- aldol addition
- biocatalysis
- reductive amination
- transaminases
- γ-hydroxy-α-amino acids
Fingerprint
Dive into the research topics of 'Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition-Transamination Reactions'. Together they form a unique fingerprint.Datasets
-
CCDC 2055194: Experimental Crystal Structure Determination
Moreno, C. J. (Creator), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Contributor), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zlld, https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc26zlld&sid=DataCite
Dataset
-
CCDC 2055192: Experimental Crystal Structure Determination
Moreno, C. J. (Contributor), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Creator), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zljb, http://www.ccdc.cam.ac.uk/services/structure_request%3Fid=doi:10.5517/ccdc.csd.cc26zljb&sid=DataCite
Dataset
-
CCDC 2055193: Experimental Crystal Structure Determination
Moreno, C. J. (Contributor), Hernández, K. (Contributor), Charnok, S. J. (Contributor), Gittings, S. (Contributor), Bolte, M. (Creator), Joglar, J. (Contributor), Bujons, J. (Contributor), Parella, T. (Contributor) & Clapés, P. (Contributor), Cambridge Crystallographic Data Centre, 11 Jan 2021
DOI: 10.5517/ccdc.csd.cc26zlkc, http://www.ccdc.cam.ac.uk/services/structure_request%3Fid=doi:10.5517/ccdc.csd.cc26zlkc&sid=DataCite
Dataset