Superstability of linear switched systems

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)

Abstract

This paper applies the concept of superstability to switched linear systems as a particular case of linear time-varying systems. A generalised concept of superstability, applied to complex matrices, and extended superstability, is introduced in order to obtain a new result for guaranteeing the asymptotic stability of a switched system under arbitrary switching. The relation between extended superstable and stable simultaneously triangularizable sets of matrices is also discussed. It is shown that stable triangularizable matrices are a proper subset of extended superstable ones, pointing out that the presented stability result is a generalisation of the previous well-known stability theorems to a broader class of switched dynamical systems. © 2013 Taylor & Francis.
Original languageEnglish
Pages (from-to)2402-2410
JournalInternational Journal of Systems Science
Volume45
DOIs
Publication statusPublished - 2 Nov 2014

Keywords

  • Simultaneous triangularization
  • Stability
  • Superstability
  • Switched systems

Fingerprint

Dive into the research topics of 'Superstability of linear switched systems'. Together they form a unique fingerprint.

Cite this