TY - JOUR
T1 - Superior performance of 18F-fluorocholine digital PET/CT in the detection of parathyroid adenomas
AU - López-Mora, Diego Alfonso
AU - Sizova, Marina
AU - Estorch, Montserrat
AU - Flotats, Albert
AU - Camacho, Valle
AU - Fernández, Alejandro
AU - Abouzian, Safae
AU - Fuentes-Ocampo, Francisco
AU - Garcia, José Ignacio Pérez
AU - Ballesteros, Ana Isabel Chico
AU - Duch, Joan
AU - Domènech, Anna
AU - Duarte, Antonio Moral
AU - Carrió, Ignasi
N1 - Funding Information:
This study was funded in part by unrestricted grant from Philips Healthcare.
Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Objective: To compare detectability of hyperfunctioning parathyroid tissue (HPT) by digital and analog 18F-fluorocholine PET/CT in patients with primary hyperparathyroidism and negative/inconclusive 99mTc-MIBI scintigraphy-SPECT/CT. Materials and methods: Thirty-three patients with primary hyperparathyroidism and negative/inconclusive 99mTc-MIBI scintigraphy-SPECT/CT were prospectively included. All patients accepted to be scanned by digital and analog PET/CT in the same imaging session after a single injection of 18F-fluorocholine. Three nuclear medicine physicians evaluated the digital and analog PET/CT datasets to assess the detection rate of HPT. Maximum standard uptake values (SUVmax) of HPT and locoregional lymph nodes were measured in both systems. Results: HPT was detected in 30/33 patients by the digital system, whereas it was detected in 22/33 patients by the analog system (p < 0.01). Moreover, in 21 of these 33 patients, both systems detected one focal 18F-fluorocholine uptake, and in one patient the digital system detected two foci. Histopathology demonstrated HPT in 32 patients and it was inconclusive in one patient. The digital PET/CT detected HPT in 29 of the 32 patients, and the analog system in 22 of the 32 (p < 0.01). All HPT suspected lesions resected and detected only by the digital system (n = 8) were < 10 mm (7.5 ± 1.3 mm), while those detected by both systems (n = 22) were > 10 mm (13 ± 3.8 mm). SUVmax of HPT lesions was significantly higher than SUVmax of locoregional lymph node independently of the PET/CT system used (4.5 ± 1.9 vs. 2.9 ± 1.3, p < 0.0001). Conclusions: Digital PET/CT offers superior performance over analog system in patients with suspected HPT and previous negative/inconclusive imaging examinations, particularly in sub-centimeter lesions. SUVmax can help in the differentiation between HTP and locoregional lymph nodes.
AB - Objective: To compare detectability of hyperfunctioning parathyroid tissue (HPT) by digital and analog 18F-fluorocholine PET/CT in patients with primary hyperparathyroidism and negative/inconclusive 99mTc-MIBI scintigraphy-SPECT/CT. Materials and methods: Thirty-three patients with primary hyperparathyroidism and negative/inconclusive 99mTc-MIBI scintigraphy-SPECT/CT were prospectively included. All patients accepted to be scanned by digital and analog PET/CT in the same imaging session after a single injection of 18F-fluorocholine. Three nuclear medicine physicians evaluated the digital and analog PET/CT datasets to assess the detection rate of HPT. Maximum standard uptake values (SUVmax) of HPT and locoregional lymph nodes were measured in both systems. Results: HPT was detected in 30/33 patients by the digital system, whereas it was detected in 22/33 patients by the analog system (p < 0.01). Moreover, in 21 of these 33 patients, both systems detected one focal 18F-fluorocholine uptake, and in one patient the digital system detected two foci. Histopathology demonstrated HPT in 32 patients and it was inconclusive in one patient. The digital PET/CT detected HPT in 29 of the 32 patients, and the analog system in 22 of the 32 (p < 0.01). All HPT suspected lesions resected and detected only by the digital system (n = 8) were < 10 mm (7.5 ± 1.3 mm), while those detected by both systems (n = 22) were > 10 mm (13 ± 3.8 mm). SUVmax of HPT lesions was significantly higher than SUVmax of locoregional lymph node independently of the PET/CT system used (4.5 ± 1.9 vs. 2.9 ± 1.3, p < 0.0001). Conclusions: Digital PET/CT offers superior performance over analog system in patients with suspected HPT and previous negative/inconclusive imaging examinations, particularly in sub-centimeter lesions. SUVmax can help in the differentiation between HTP and locoregional lymph nodes.
KW - 18F-fluorocholine
KW - 99mTc-MIBI scintigraphy
KW - Analog PET/CT
KW - Digital PET/CT
KW - Parathyroid adenoma
KW - Primary hyperparathyroidism
UR - http://www.scopus.com/inward/record.url?scp=85077693242&partnerID=8YFLogxK
U2 - 10.1007/s00259-020-04680-7
DO - 10.1007/s00259-020-04680-7
M3 - Article
C2 - 31919634
AN - SCOPUS:85077693242
SN - 1619-7070
VL - 47
SP - 572
EP - 578
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 3
ER -