Study of the photochemical properties and conical intersections of [2,2′-Bipyridyl]-3-amine-3′-ol

Juan Manuel Ortiz-Sánchez, Ricard Gelabert, Miquel Moreno, José M. Lluch

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)

Abstract

The two isoelectronic bipyridyl derivatives [2,2′-bipyridyl]-3, 3′-diamine and [2,2′-bipyridyl]-3,3′-diol are experimentally known to undergo very different excited-state double-proton-transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. In a previous study, these differences were explained from a theoretical point of view, because of topographical features in the potential energy surface and the presence of conical intersections (CIs). Here, we analyze the photochemical properties of a new molecule, [2,2′-bipyridyl]-3-amine- 3′-ol [BP(OH)(NH2)], which is, in fact, a hybrid of the former two. Our density functional theory (DFT), time-dependent DFT (TDDFT), and complete active space self-consistent field (CASSCF) calculations indicate that the double-proton-transfer process in the ground and first singlet π→π* excited state in BP(OH)(NH2) presents features that are between those of their "parents". The presence of two CIs and the role they may play in the actual photochemistry of BP(OH)(NH2) and other bipyridyl derivatives are also discussed. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
Original languageEnglish
Pages (from-to)2068-2076
JournalChemPhysChem
Volume9
Issue number14
DOIs
Publication statusPublished - 6 Oct 2008

Keywords

  • Conical intersections
  • Excited states
  • Femtochemistry
  • Proton transfer
  • Reaction mechanisms

Fingerprint

Dive into the research topics of 'Study of the photochemical properties and conical intersections of [2,2′-Bipyridyl]-3-amine-3′-ol'. Together they form a unique fingerprint.

Cite this