Strong Converse for the Classical Capacity of Optical Quantum Communication Channels

Bhaskar Roy Bardhan, Raul Garcia-Patron, Mark M. Wilde, Andreas Winter

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)


© 1963-2012 IEEE. We establish the classical capacity of optical quantum channels as a sharp transition between two regimes - one which is an error-free regime for communication rates below the capacity, and the other in which the probability of correctly decoding a classical message converges exponentially fast to zero if the communication rate exceeds the classical capacity. This result is obtained by proving a strong converse theorem for the classical capacity of all phase-insensitive bosonic Gaussian channels, a well-established model of optical quantum communication channels, such as lossy optical fibers, amplifier, and free-space communication. The theorem holds under a particular photon-number occupation constraint, which we describe in detail in this paper. Our result bolsters the understanding of the classical capacity of these channels and opens the path to applications, such as proving the security of noisy quantum storage models of cryptography with optical links.
Original languageEnglish
Article number7042310
Pages (from-to)1842-1850
JournalIEEE Transactions on Information Theory
Publication statusPublished - 1 Apr 2015


  • Gaussian quantum channels
  • channel capacity
  • optical communication channels
  • photon number constraint
  • strong converse theorem


Dive into the research topics of 'Strong Converse for the Classical Capacity of Optical Quantum Communication Channels'. Together they form a unique fingerprint.

Cite this