Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy

Mark M. Wilde, Andreas Winter, Dong Yang

Research output: Contribution to journalArticleResearchpeer-review

209 Citations (Scopus)

Abstract

A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a "sandwiched" Rényi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results. © 2014 Springer-Verlag Berlin Heidelberg.
Original languageEnglish
Pages (from-to)593-622
JournalCommunications in Mathematical Physics
Volume331
DOIs
Publication statusPublished - 1 Jan 2014

Fingerprint

Dive into the research topics of 'Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy'. Together they form a unique fingerprint.

Cite this