String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

Loriano Bonora, Andrey Bytsenko, Emilio Elizalde

    Research output: Contribution to journalReview articleResearchpeer-review

    4 Citations (Scopus)

    Abstract

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. © 2012 IOP Publishing Ltd.
    Original languageEnglish
    Article number374002
    JournalJournal of Physics A: Mathematical and Theoretical
    Volume45
    Issue number37
    DOIs
    Publication statusPublished - 21 Sep 2012

    Fingerprint Dive into the research topics of 'String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups'. Together they form a unique fingerprint.

    Cite this