STE-QUEST - Test of the universality of free fall using cold atom interferometry

D. N. Aguilera, H. Ahlers, B. Battelier, A. Bawamia, A. Bertoldi, R. Bondarescu, K. Bongs, P. Bouyer, C. Braxmaier, L. Cacciapuoti, C. Chaloner, M. Chwalla, W. Ertmer, M. Franz, N. Gaaloul, M. Gehler, D. Gerardi, L. Gesa, N. Gürlebeck, J. HartwigM. Hauth, O. Hellmig, W. Herr, S. Herrmann, A. Heske, A. Hinton, P. Ireland, P. Jetzer, U. Johann, M. Krutzik, A. Kubelka, C. Lämmerzahl, A. Landragin, I. Lloro, D. Massonnet, I. Mateos, A. Milke, M. Nofrarias, M. Oswald, A. Peters, K. Posso-Trujillo, E. Rasel, E. Rocco, A. Roura, J. Rudolph, W. Schleich, C. Schubert, T. Schuldt, S. Seidel, K. Sengstock, C. F. Sopuerta, F. Sorrentino, D. Summers, G. M. Tino, C. Trenkel, N. Uzunoglu, W. Von Klitzing, R. Walser, T. Wendrich, A. Wenzlawski, P. Weßels, A. Wicht, E. Wille, M. Williams, P. Windpassinger, N. Zahzam

    Research output: Contribution to journalArticleResearchpeer-review

    124 Citations (Scopus)

    Abstract

    The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The spacetime explorer and quantum equivalence principle space test satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the universality of free fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of 85Rb and 87Rb. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eötvös parameter of at least 2 × 10-15. In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources. © 2014 IOP Publishing Ltd.
    Original languageEnglish
    Article number115010
    JournalClassical and Quantum Gravity
    Volume31
    Issue number11
    DOIs
    Publication statusPublished - 7 Jun 2014

    Keywords

    • atom interferometry
    • Bose-Einstein condensates
    • cold atoms
    • equivalence principle
    • microgravity
    • quantum gravity
    • space physics

    Fingerprint Dive into the research topics of 'STE-QUEST - Test of the universality of free fall using cold atom interferometry'. Together they form a unique fingerprint.

  • Cite this

    Aguilera, D. N., Ahlers, H., Battelier, B., Bawamia, A., Bertoldi, A., Bondarescu, R., Bongs, K., Bouyer, P., Braxmaier, C., Cacciapuoti, L., Chaloner, C., Chwalla, M., Ertmer, W., Franz, M., Gaaloul, N., Gehler, M., Gerardi, D., Gesa, L., Gürlebeck, N., ... Zahzam, N. (2014). STE-QUEST - Test of the universality of free fall using cold atom interferometry. Classical and Quantum Gravity, 31(11), [115010]. https://doi.org/10.1088/0264-9381/31/11/115010