Stability and robustness analysis of cooperation cycles driven by destructive agents in finite populations

Rubén J. Requejo, Juan Camacho, José A. Cuesta, Alex Arenas

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

The emergence and promotion of cooperation are two of the main issues in evolutionary game theory, as cooperation is amenable to exploitation by defectors, which take advantage of cooperative individuals at no cost, dooming them to extinction. It has been recently shown that the existence of purely destructive agents (termed jokers) acting on the common enterprises (public goods games) can induce stable limit cycles among cooperation, defection, and destruction when infinite populations are considered. These cycles allow for time lapses in which cooperators represent a relevant fraction of the population, providing a mechanism for the emergence of cooperative states in nature and human societies. Here we study analytically and through agent-based simulations the dynamics generated by jokers in finite populations for several selection rules. Cycles appear in all cases studied, thus showing that the joker dynamics generically yields a robust cyclic behavior not restricted to infinite populations. We also compute the average time in which the population consists mostly of just one strategy and compare the results with numerical simulations. © 2012 American Physical Society.
Original languageEnglish
Article number026105
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume86
DOIs
Publication statusPublished - 9 Aug 2012

Fingerprint

Dive into the research topics of 'Stability and robustness analysis of cooperation cycles driven by destructive agents in finite populations'. Together they form a unique fingerprint.

Cite this