SPICE Implementation of the Dynamic Memdiode Model for Bipolar Resistive Switching Devices

Fernando Leonel Aguirre*, Jordi Suñé, Enrique Miranda*

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

33 Citations (Scopus)

Abstract

This paper reports the fundamentals and the SPICE implementation of the Dynamic Memdiode Model (DMM) for the conduction characteristics of bipolar-type resistive switching (RS) devices. Following Prof. Chua’s memristive devices theory, the memdiode model comprises two equations, one for the electron transport based on a heuristic extension of the quantum point-contact model for filamentary conduction in thin dielectrics and a second equation for the internal memory state related to the reversible displacement of atomic species within the oxide film. The DMM represents a breakthrough with respect to the previous Quasi-static Memdiode Model (QMM) since it describes the memory state of the device as a balance equation incorporating both the snapback and snapforward effects, features of utmost importance for the accurate and realistic simulation of the RS phenomenon. The DMM allows simple setting of the initial memory condition as well as decoupled modeling of the set and reset transitions. The model equations are implemented in the LTSpice simulator using an equivalent circuital approach with behavioral components and sources. The practical details of the model implementation and its modes of use are also discussed.

Original languageEnglish
Article number330
Number of pages18
JournalMicromachines
Volume13
Issue number2
DOIs
Publication statusPublished - 19 Feb 2022

Keywords

  • Memdiode
  • Memory
  • Memristor
  • Resistive switching

Fingerprint

Dive into the research topics of 'SPICE Implementation of the Dynamic Memdiode Model for Bipolar Resistive Switching Devices'. Together they form a unique fingerprint.

Cite this