Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties.

Jordi Piella, Neus G. Bastús, Victor Puntes

    Research output: Contribution to journalArticleResearchpeer-review

    205 Citations (Scopus)

    Abstract

    © 2016 American Chemical Society. Highly monodisperse, biocompatible and functionalizable sub-10-nm citrate-stabilized gold nanoparticles (Au NPs) have been synthesized following a kinetically controlled seeded-growth strategy. The use of traces of tannic acid together with an excess of sodium citrate during nucleation is fundamental in the formation of a high number (7 × 1013 NPs/mL) of small ∼3.5 nm Au seeds with a very narrow distribution. A homogeneous nanometric growth of these seeds is then achieved by adjusting the reaction parameters: pH, temperature, sodium citrate concentration and gold precursor to seed ratio. We use this method to produce Au NPs with a precise control over their sizes between 3.5 and 10 nm and a versatile surface chemistry allowing studying the size-dependent optical properties in this transition size regime lying between clusters and nanoparticles. Interestingly, an inflection point is observed for Au NPs smaller than 8 nm in which the sensitivity of the localized surface plasmon resonance (LSPR) peak position as a function of NPs size and surface modifications dramatically increase. These studies are relevant in the design of the final selectivity, activity and compatibility of Au NPs, especially in those (bio)applications where size is a critical parameter (e.g., biodistribution, multiplex labeling, and protein interaction).
    Original languageEnglish
    Pages (from-to)1066-1075
    JournalChemistry of Materials
    Volume28
    Issue number4
    DOIs
    Publication statusPublished - 23 Feb 2016

    Fingerprint Dive into the research topics of 'Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties.'. Together they form a unique fingerprint.

    Cite this