Silicon chips detect intracellular pressure changes in living cells

Rodrigo Gómez-Martínez, Alberto M. Hernández-Pinto, Marta Duch, Patricia Vázquez, Kirill Zinoviev, Enrique J. De La Rosa, Jaume Esteve, Teresa Suárez, José A. Plaza

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

The ability to measure pressure changes inside different components of a living cell is important, because it offers an alternative way to study fundamental processes that involve cell deformation. Most current techniques such as pipette aspiration, optical interferometry or external pressure probes use either indirect measurement methods or approaches that can damage the cell membrane. Here we show that a silicon chip small enough to be internalized into a living cell can be used to detect pressure changes inside the cell. The chip, which consists of two membranes separated by a vacuum gap to form a Fabry-Pérot resonator, detects pressure changes that can be quantified from the intensity of the reflected light. Using this chip, we show that extracellular hydrostatic pressure is transmitted into HeLa cells and that these cells can endure hypo-osmotic stress without significantly increasing their intracellular hydrostatic pressure. © 2013 Macmillan Publishers Limited. All rights reserved.
Original languageEnglish
Pages (from-to)517-521
JournalNature Nanotechnology
Volume8
Issue number7
DOIs
Publication statusPublished - 1 Jan 2013

Fingerprint Dive into the research topics of 'Silicon chips detect intracellular pressure changes in living cells'. Together they form a unique fingerprint.

  • Cite this

    Gómez-Martínez, R., Hernández-Pinto, A. M., Duch, M., Vázquez, P., Zinoviev, K., De La Rosa, E. J., Esteve, J., Suárez, T., & Plaza, J. A. (2013). Silicon chips detect intracellular pressure changes in living cells. Nature Nanotechnology, 8(7), 517-521. https://doi.org/10.1038/nnano.2013.118