SGnn: A Web Server for the Prediction of Prion-Like Domains Recruitment to Stress Granules Upon Heat Stress.

V Iglesias, J Santos, J Santos-Suárez, C Pintado-Grima, Salvador Ventura Zamora

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)

Abstract

Proteins bearing prion-like domains (PrLDs) are essential players in stress granules (SG) assembly. Analysis of data on heat stress-induced recruitment of yeast PrLDs to SG suggests that this propensity might be connected with three defined protein biophysical features: aggregation propensity, net charge, and the presence of free cysteines. These three properties can be read directly in the PrLDs sequences, and their combination allows to predict protein recruitment to SG under heat stress. On this basis, we implemented SGnn, an online predictor of SG recruitment that exploits a feed-forward neural network for high accuracy classification of the assembly behavior of PrLDs. The simplicity and precision of our strategy should allow its implementation to identify heat stress-induced SG-forming proteins in complete proteomes.
Original languageEnglish
Article number718301
Number of pages8
JournalFrontiers in Molecular Biosciences
Volume8
DOIs
Publication statusPublished - Aug 2021

Fingerprint

Dive into the research topics of 'SGnn: A Web Server for the Prediction of Prion-Like Domains Recruitment to Stress Granules Upon Heat Stress.'. Together they form a unique fingerprint.

Cite this