TY - JOUR
T1 - Semen modulates inflammation and angiogenesis in the reproductive tract of female rabbits
AU - Gardela, Jaume
AU - Jauregi-Miguel, Amaia
AU - Martinez, Cristina A.
AU - Rodríguez-Martinez, Heriberto
AU - López-Béjar, Manel
AU - Álvarez-Rodríguez, Manuel
N1 - Funding Information:
Funding: This research was funded by the Research Council FORMAS, Stockholm (Project 2017-00946 and Project 2019-00288), The Swedish Research Council (Vetenskaprådet, VR; project 2015-05919) and Juan de la Cierva Incorporación Postdoctoral Research Program (MICINN; IJDC-2015-24380). J.G. is supported by the Generalitat de Catalunya, Agency for Management of University and Research Grants co-financed with the Eropean Social Found (grants for the recruitment of new research staff 2018 FI_B 00236).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - The maternal environment modulates immune responses to facilitate embryo development and ensure pregnancy. Unraveling this modulation could improve the livestock breeding systems. Here it is hypothesized that the exposure of the female rabbit reproductive tract to semen, as well as to early embryos, modulates inflammation and angiogenesis among different tissue segments. qPCR analysis of the gene expression changes of the anti-inflammatory interleukin-10 (IL10) and transforming growth factor beta family (TGFβ1–3) and the angiogenesis mediator vascular endothelial growth factor (VEGF-A) were examined in response to mating or insemination with sperm-free seminal plasma (SP). Reproductive tract segment (cervix to infundibulum) samples were obtained in Experiment 1, 20 h after gonadotropin-releasing hormone (GnRH) stimulation (control), natural mating (NM) or vaginal infusion with sperm-free SP (SP-AI). Additionally, segmented samples were also obtained at 10, 24, 36, 68 or 72 h after GnRH-stimulation and natural mating (Experiment 2). The results of gene expression, analyzed by quantitative PCR, showed that NM effects were mainly localized in the uterine tissues, depicting clear temporal variation, while SP-AI effects were restricted to the oviduct. Changes in anti-inflammatory and angiogenesis mediators indicate an early response in the uterus and a late modulation in the oviduct either induced by semen or preimplantation embryos. This knowledge could be used in the implementation of physiological strategies in breeding systems to face the new challenges on rabbit productivity and sustainability.
AB - The maternal environment modulates immune responses to facilitate embryo development and ensure pregnancy. Unraveling this modulation could improve the livestock breeding systems. Here it is hypothesized that the exposure of the female rabbit reproductive tract to semen, as well as to early embryos, modulates inflammation and angiogenesis among different tissue segments. qPCR analysis of the gene expression changes of the anti-inflammatory interleukin-10 (IL10) and transforming growth factor beta family (TGFβ1–3) and the angiogenesis mediator vascular endothelial growth factor (VEGF-A) were examined in response to mating or insemination with sperm-free seminal plasma (SP). Reproductive tract segment (cervix to infundibulum) samples were obtained in Experiment 1, 20 h after gonadotropin-releasing hormone (GnRH) stimulation (control), natural mating (NM) or vaginal infusion with sperm-free SP (SP-AI). Additionally, segmented samples were also obtained at 10, 24, 36, 68 or 72 h after GnRH-stimulation and natural mating (Experiment 2). The results of gene expression, analyzed by quantitative PCR, showed that NM effects were mainly localized in the uterine tissues, depicting clear temporal variation, while SP-AI effects were restricted to the oviduct. Changes in anti-inflammatory and angiogenesis mediators indicate an early response in the uterus and a late modulation in the oviduct either induced by semen or preimplantation embryos. This knowledge could be used in the implementation of physiological strategies in breeding systems to face the new challenges on rabbit productivity and sustainability.
KW - Angiogenesis
KW - Endometrium
KW - Gene expression
KW - Inflammation
KW - Oviduct
KW - Rabbit
KW - Seminal plasma
KW - Spermatozoa
UR - http://www.scopus.com/inward/record.url?scp=85096679339&partnerID=8YFLogxK
U2 - https://doi.org/10.3390/ani10122207
DO - https://doi.org/10.3390/ani10122207
M3 - Artículo
C2 - 33255666
AN - SCOPUS:85096679339
VL - 10
SP - 1
EP - 14
JO - Animals
JF - Animals
SN - 2076-2615
IS - 12
M1 - 2207
ER -