Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals

Stanislav Babak, Jonathan Gair, Alberto Sesana, Enrico Barausse, Carlos F. Sopuerta, Christopher P.L. Berry, Emanuele Berti, Pau Amaro-Seoane, Antoine Petiteau, Antoine Klein

    Research output: Contribution to journalArticleResearchpeer-review

    99 Citations (Scopus)

    Abstract

    © 2017 American Physical Society. The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the gravitational-wave signals from systems comprised of a massive black hole and a stellar-mass compact object. These systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to complete ∼104-105 cycles in band, thus allowing exquisite measurements of their parameters. In this work, we attempt to quantify the astrophysical uncertainties affecting the predictions for the number of EMRIs detectable by LISA, and find that competing astrophysical assumptions produce a variance of about three orders of magnitude in the expected intrinsic EMRI rate. However, we find that irrespective of the astrophysical model, at least a few EMRIs per year should be detectable by the LISA mission, with up to a few thousands per year under the most optimistic astrophysical assumptions. We also investigate the precision with which LISA will be able to extract the parameters of these sources. We find that typical fractional statistical errors with which the intrinsic parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered are ∼10-6-10-4. Luminosity distance (which is required to infer true masses) is inferred to about 10% precision and sky position is localized to a few square degrees, while tests of the multipolar structure of the Kerr metric can be performed to percent-level precision or better.
    Original languageEnglish
    Article number103012
    JournalPhysical Review D
    Volume95
    Issue number10
    DOIs
    Publication statusPublished - 1 Jan 2017

    Fingerprint Dive into the research topics of 'Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals'. Together they form a unique fingerprint.

  • Cite this

    Babak, S., Gair, J., Sesana, A., Barausse, E., Sopuerta, C. F., Berry, C. P. L., Berti, E., Amaro-Seoane, P., Petiteau, A., & Klein, A. (2017). Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Physical Review D, 95(10), [103012]. https://doi.org/10.1103/PhysRevD.95.103012