Scale-invariant large nonlocality in polycrystalline graphene

Mário Ribeiro, Stephen R. Power, Stephan Roche, Luis E. Hueso, Fèlix Casanova

    Research output: Contribution to journalArticleResearchpeer-review

    9 Citations (Scopus)

    Abstract

    © 2017 The Author(s). The observation of large nonlocal resistances near the Dirac point in graphene has been related to a variety of intrinsic Hall effects, where the spin or valley degrees of freedom are controlled by symmetry breaking mechanisms. Engineering strong spin or valley Hall signals on scalable graphene devices could stimulate further practical developments of spin- and valleytronics. Here we report on scale-invariant nonlocal transport in large-scale chemical vapor deposition graphene under an applied external magnetic field. Contrary to previously reported Zeeman spin Hall effect, our results are explained by field-induced spin-filtered edge states whose sensitivity to grain boundaries manifests in the nonlocal resistance. This phenomenon, related to the emergence of the quantum Hall regime, persists up to the millimeter scale, showing that polycrystalline morphology can be imprinted in nonlocal transport. This suggests that topological Hall effects in large-scale graphene materials are highly sensitive to the underlying structural morphology, limiting practical realizations.
    Original languageEnglish
    Article number2198
    JournalNature Communications
    Volume8
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2017

    Fingerprint Dive into the research topics of 'Scale-invariant large nonlocality in polycrystalline graphene'. Together they form a unique fingerprint.

    Cite this