Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype

Alba Chacon-Cabrera, Mercè Mateu-Jimenez, Klaus Langohr, Clara Fermoselle, Elena García-Arumí, Antoni L. Andreu, Jose Yelamos, Esther Barreiro

    Research output: Contribution to journalArticleResearchpeer-review

    32 Citations (Scopus)

    Abstract

    © 2017 Wiley Periodicals, Inc. Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1−/−) and Parp-2−/− mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1−/−, and Parp-2−/−), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1−/− and Parp-2−/− cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention.
    Original languageEnglish
    Pages (from-to)3744-3761
    JournalJournal of Cellular Physiology
    Volume232
    Issue number12
    DOIs
    Publication statusPublished - 1 Dec 2017

    Keywords

    • PARP activity
    • Parp-1 and Parp-2 mice −/− −/−
    • cancer-induced cachexia
    • muscle anabolism and catabolism and mitochondrial content
    • muscle atrophy and myosin loss

    Fingerprint

    Dive into the research topics of 'Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype'. Together they form a unique fingerprint.

    Cite this