Relativistic encounters in dense stellar systems

Pau Amaro-Seoane, Marc Dewi Freitag

    Research output: Contribution to journalArticleResearchpeer-review

    3 Citations (Scopus)

    Abstract

    Two coalescing black holes (BHs) represent a conspicuous source of gravitational waves (GWs). The merger involves 17 parameters in the general case of Kerr BHs, so that a successful identification and parameter extraction of the information encoded in the waves will provide us with a detailed description of the physics of BHs. A search based on matched-filtering for characterization and parameter extraction requires the development of some 1015 waveforms. If a third additional BH perturbed the system, the waveforms would not be applicable, and we would need to increase the number of templates required for a valid detection. In this paper, we calculate the probability that more than two BHs interact in the regime of strong relativity in a dense stellar cluster. We determine the physical properties necessary in a stellar system for three BHs to have a close encounter in this regime and also for an existing binary of two BHs to have a strong interaction with a third hole. In both cases the event rate is negligible. While dense stellar systems such as galactic nuclei, globular clusters and nuclear stellar clusters are the breeding grounds for the sources of GWs that ground-based detectors like Advanced LIGO and Advanced VIRGO will be exploring, the analysis of the waveforms in full general relativity needs only to evaluate the two-body problem. This reduces the number of templates of waveforms to create by orders of magnitude. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
    Original languageEnglish
    Pages (from-to)551-554
    JournalMonthly Notices of the Royal Astronomical Society
    Volume412
    Issue number1
    DOIs
    Publication statusPublished - 1 Jan 2011

    Keywords

    • Black hole physics
    • Galaxies:kinematics and dynamics
    • Globular clusters: general
    • Gravitational waves

    Fingerprint Dive into the research topics of 'Relativistic encounters in dense stellar systems'. Together they form a unique fingerprint.

  • Cite this