TY - JOUR
T1 - Rapid warning microanalyzer for heavy metals monitoring in natural waters
AU - Pascual-Esco, Alex
AU - Alonso-Chamarro, Julián
AU - Puyol, Mar
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/10/1
Y1 - 2022/10/1
N2 - A warning microanalyzer for the rapid monitoring of different heavy metals in water using Carbon Dots (CDs) as selective optical reagents is presented. The synthesized CDs have different surface functionalization and exhibit selective fluorescence quenching by heavy metal ions, that combined with the use of microfluidics, provide sensitivity, ease of automation and reproducibility to the method. Moreover, they present maximum excitation wavelengths around 350 nm, allowing multiparametric analysis with a single light source. Although quantum yields range from 16 % to 78 % depending on the type of CDs, enough sensitivity is achieved for each heavy metal using the same measurement conditions of the optical detection system (lock-in modulating frequency, signal amplitude and measurement frequency). The microanalyzer is composed of a Cyclic Olefin Copolymer (COC) analytical microsystem, a flow management system, and a miniaturized customized optical detection system. In this paper, we demonstrate that our proposed system can be used as a toxicity control system by selectively measuring five different heavy metal ions (Co2+, Cu2+, Hg2+, Ni2+, and Pb2+) with detection limits ranging from 2 to 12 ppb. Spiked tap water samples were analyzed, giving recoveries from 98 % to 134 %. Polluted samples containing four of the five heavy metal ions studied (Co2+, Cu2+, Ni2+, and Pb2+) were also analyzed with no significant differences observed between both methods, the proposed microanalyzer and the reference method (ICP-OES).
AB - A warning microanalyzer for the rapid monitoring of different heavy metals in water using Carbon Dots (CDs) as selective optical reagents is presented. The synthesized CDs have different surface functionalization and exhibit selective fluorescence quenching by heavy metal ions, that combined with the use of microfluidics, provide sensitivity, ease of automation and reproducibility to the method. Moreover, they present maximum excitation wavelengths around 350 nm, allowing multiparametric analysis with a single light source. Although quantum yields range from 16 % to 78 % depending on the type of CDs, enough sensitivity is achieved for each heavy metal using the same measurement conditions of the optical detection system (lock-in modulating frequency, signal amplitude and measurement frequency). The microanalyzer is composed of a Cyclic Olefin Copolymer (COC) analytical microsystem, a flow management system, and a miniaturized customized optical detection system. In this paper, we demonstrate that our proposed system can be used as a toxicity control system by selectively measuring five different heavy metal ions (Co2+, Cu2+, Hg2+, Ni2+, and Pb2+) with detection limits ranging from 2 to 12 ppb. Spiked tap water samples were analyzed, giving recoveries from 98 % to 134 %. Polluted samples containing four of the five heavy metal ions studied (Co2+, Cu2+, Ni2+, and Pb2+) were also analyzed with no significant differences observed between both methods, the proposed microanalyzer and the reference method (ICP-OES).
KW - Carbon Dots
KW - Fluorescence quenching
KW - Heavy metals
KW - Microfluidics
UR - http://www.scopus.com/inward/record.url?scp=85132898405&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.snb.2022.132180
DO - https://doi.org/10.1016/j.snb.2022.132180
M3 - Article
AN - SCOPUS:85132898405
VL - 368
JO - Sensors and Actuators, B: Chemical
JF - Sensors and Actuators, B: Chemical
SN - 0925-4005
M1 - 132180
ER -