TY - JOUR

T1 - Quantum state cloning using Deutschian closed timelike curves

AU - Brun, Todd A.

AU - Wilde, Mark M.

AU - Winter, Andreas

PY - 2013/11/4

Y1 - 2013/11/4

N2 - We show that it is possible to clone quantum states to arbitrary accuracy in the presence of a Deutschian closed timelike curve (D-CTC), with a fidelity converging to one in the limit as the dimension of the CTC system becomes large - thus resolving an open conjecture [Brun et al., Phys. Rev. Lett. 102, 210402 (2009)]. This result follows from a D-CTC-assisted scheme for producing perfect clones of a quantum state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a quantum state from empirical estimates of the probabilities of an informationally complete measurement. Our results imply more generally that every continuous, but otherwise arbitrarily nonlinear map from states to states, can be implemented to arbitrary accuracy with D-CTCs. Furthermore, our results show that Deutsch's model for closed timelike curves is in fact a classical model, in the sense that two arbitrary, distinct density operators are perfectly distinguishable (in the limit of a large closed timelike curve system); hence, in this model quantum mechanics becomes a classical theory in which each density operator is a distinct point in a classical phase space. © 2013 American Physical Society.

AB - We show that it is possible to clone quantum states to arbitrary accuracy in the presence of a Deutschian closed timelike curve (D-CTC), with a fidelity converging to one in the limit as the dimension of the CTC system becomes large - thus resolving an open conjecture [Brun et al., Phys. Rev. Lett. 102, 210402 (2009)]. This result follows from a D-CTC-assisted scheme for producing perfect clones of a quantum state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a quantum state from empirical estimates of the probabilities of an informationally complete measurement. Our results imply more generally that every continuous, but otherwise arbitrarily nonlinear map from states to states, can be implemented to arbitrary accuracy with D-CTCs. Furthermore, our results show that Deutsch's model for closed timelike curves is in fact a classical model, in the sense that two arbitrary, distinct density operators are perfectly distinguishable (in the limit of a large closed timelike curve system); hence, in this model quantum mechanics becomes a classical theory in which each density operator is a distinct point in a classical phase space. © 2013 American Physical Society.

U2 - https://doi.org/10.1103/PhysRevLett.111.190401

DO - https://doi.org/10.1103/PhysRevLett.111.190401

M3 - Article

VL - 111

M1 - 190401

ER -