Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach

Rosana Simón-Vázquez, Marta Domínguez, Víctor A. Lórenz-Fonfría, Susana Álvarez, José Luís Bourdelande, Ángel R. de Lera, Esteve Padrós, Alex Perálvarez-Marín

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Abstract

Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C13 of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins. © 2012 Simón-Vázquez et al.
Original languageEnglish
Article numbere42447
JournalPLoS ONE
Volume7
Issue number8
DOIs
Publication statusPublished - 3 Aug 2012

Fingerprint Dive into the research topics of 'Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach'. Together they form a unique fingerprint.

Cite this