Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation-Immunogenicity Balance, Cell Viability, and Differentiation Potential

Laura Barrachina, Ana Rosa Remacha, Antonio Romero, Francisco José Vázquez, Jorge Albareda, Marta Prades, Jaime Gosálvez, Rosa Roy, Pilar Zaragoza, Inmaculada Martín-Burriel, Clementina Rodellar

Research output: Contribution to journalArticleResearchpeer-review

30 Citations (Scopus)

Abstract

© 2017 Mary Ann Liebert, Inc. Mesenchymal stem cells (MSCs) have a great potential for treating equine musculoskeletal injuries. Although their mechanisms of action are not completely known, their immunomodulatory properties appear to be key in their functions. The expression of immunoregulatory molecules by MSCs is regulated by proinflammatory cytokines; so inflammatory priming of MSCs might improve their therapeutic potential. However, inflammatory environment could also increase MSC immunogenicity and decrease MSC viability and differentiation capacity. The aim of this study was to assess the effect of cytokine priming on equine bone marrow-derived MSC (eBM-MSC) immunoregulation, immunogenicity, viability, and differentiation potential, to enhance MSC immunoregulatory properties, without impairing their immune-evasive status, viability, and plasticity. Equine BM-MSCs (n = 4) were exposed to 5 ng/mL of TNFα and IFNγ for 12 h (CK5-priming). Subsequently, expression of genes coding for immunomodulatory, immunogenic, and apoptosis-related molecules was analyzed by real-time quantitative polymerase chain reaction. Chromatin integrity and proliferation assays were assessed to evaluate cell viability. Trilineage differentiation was evaluated by specific staining and gene expression. Cells were reseeded in a basal medium for additional 7 days post-CK5 to elucidate if priming-induced changes were maintained along the time. CK5-priming led to an upregulation of immunoregulatory genes IDO, iNOS, IL-6, COX-2, and VCAM-1. MHC-II and CD40 were also upregulated, but no change in other costimulatory molecules was observed. These changes were not maintained 7 days after CK5-priming. Viability and differentiation potential were maintained after CK5-priming. These findings suggest that CK5-priming of eBM-MSCs could improve their in vivo effectiveness without affecting other eBM-MSC properties.
Original languageEnglish
Pages (from-to)15-24
JournalStem Cells and Development
Volume26
Issue number1
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • Horse
  • Immune regulation
  • Immunogenicity
  • Inflammation
  • Regenerative medicine

Fingerprint Dive into the research topics of 'Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation-Immunogenicity Balance, Cell Viability, and Differentiation Potential'. Together they form a unique fingerprint.

  • Cite this