Pressure-Responsive, Surfactant-Free CO<inf>2</inf>-Based Nanostructured Fluids

Natascia Grimaldi, Paula Elena Rojas, Simon Stehle, Alba Cordoba, Ralf Schweins, Santi Sala, Stefan Luelsdorf, David Piña, Jaume Veciana, Jordi Faraudo, Alessandro Triolo, Andreas Siegfried Braeuer, Nora Ventosa

    Research output: Contribution to journalArticleResearchpeer-review

    11 Citations (Scopus)


    © 2017 American Chemical Society. Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. "Water-rich" nanodomains embedded into a "water-depleted" matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the "water-rich" nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering.
    Original languageEnglish
    Pages (from-to)10774-10784
    JournalACS Nano
    Issue number11
    Publication statusPublished - 28 Nov 2017


    • MD simulations
    • Raman
    • SANS
    • compressed CO 2
    • microemulsion
    • nanostructured fluids
    • neutron scattering
    • surfactant-free


    Dive into the research topics of 'Pressure-Responsive, Surfactant-Free CO<inf>2</inf>-Based Nanostructured Fluids'. Together they form a unique fingerprint.

    Cite this