PRAXIS: Towards automatic cognitive assessment using gesture recognition

Farhood Negin, Pau Rodriguez, Michal Koperski, Adlen Kerboua, Jordi Gonzàlez, Jeremy Bourgeois, Emmanuelle Chapoulie, Philippe Robert, Francois Bremond

Research output: Contribution to journalArticleResearch

12 Citations (Scopus)

Abstract

© 2018 Elsevier Ltd Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer's disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults. In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames. We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
Original languageEnglish
Pages (from-to)21-35
JournalExpert Systems with Applications
Volume106
DOIs
Publication statusPublished - 15 Sep 2018

Keywords

  • Computer assisted diagnosis
  • Cybercare industry applications
  • Human computer interaction
  • Medical services
  • Patient monitoring
  • Pattern recognition

Fingerprint Dive into the research topics of 'PRAXIS: Towards automatic cognitive assessment using gesture recognition'. Together they form a unique fingerprint.

  • Cite this

    Negin, F., Rodriguez, P., Koperski, M., Kerboua, A., Gonzàlez, J., Bourgeois, J., Chapoulie, E., Robert, P., & Bremond, F. (2018). PRAXIS: Towards automatic cognitive assessment using gesture recognition. Expert Systems with Applications, 106, 21-35. https://doi.org/10.1016/j.eswa.2018.03.063