Postinjury Exercise and Platelet-Rich Plasma Therapies Improve Skeletal Muscle Healing in Rats but Are Not Synergistic When Combined

Paola Contreras-Muñoz, Joan Ramon Torrella, Xavier Serres, David Rizo-Roca, Meritxell De La Varga, Ginés Viscor, Vicente Martínez-Ibáñez, José Luis Peiró, Tero A.H. Järvinen, Gil Rodas, Mario Marotta

    Research output: Contribution to journalArticleResearchpeer-review

    9 Citations (Scopus)


    © American Orthopaedic Society for Sports Medicine. Background: Skeletal muscle injuries are the most common sports-related injury and a major concern in sports medicine. The effect of platelet-rich plasma (PRP) injections on muscle healing is still poorly understood, and current data are inconclusive. Purpose: To evaluate the effects of an ultrasound-guided intramuscular PRP injection, administered 24 hours after injury, and/or posttraumatic daily exercise training for 2 weeks on skeletal muscle healing in a recently established rat model of skeletal muscle injury that highly mimics the muscle trauma seen in human athletes. Study Design: Controlled laboratory study. Methods: A total of 40 rats were assigned to 5 groups. Injured rats (medial gastrocnemius injury) received a single PRP injection (PRP group), daily exercise training (Exer group), or a combination of a single PRP injection and daily exercise training (PRP-Exer group). Untreated and intramuscular saline-injected animals were used as controls. Muscle force was determined 2 weeks after muscle injury, and muscles were harvested and evaluated by means of histological assessment and immunofluorescence microscopy. Results: Both PRP (exhibiting 4.8-fold higher platelet concentration than whole blood) and exercise training improved muscle strength (maximum tetanus force, TetF) in approximately 18%, 20%, and 30% of rats in the PRP, PRP-Exer, and Exer groups, respectively. Specific markers of muscle regeneration (developmental myosin heavy chain, dMHC) and scar formation (collagen I) demonstrated the beneficial effect of the tested therapies in accelerating the muscle healing process in rats. PRP and exercise treatments stimulated the growth of newly formed regenerating muscle fibers (1.5-, 2-, and 2.5-fold increase in myofiber cross-sectional area in PRP, PRP-Exer, and Exer groups, respectively) and reduced scar formation in injured skeletal muscle (20%, 34%, and 41% of reduction in PRP, PRP-Exer, and Exer groups, respectively). Exercise-treated muscles (PRP-Exer and Exer groups) had significantly reduced percentage of dMHC-positive regenerating fibers (35% and 47% decrease in dMHC expression, respectively), indicating that exercise therapies accelerated the muscle healing process witnessed by the more rapid replacement of the embryonic-developmental myosin isoform by mature muscle myosin isoforms. Conclusion: Intramuscular PRP injection and, especially, treadmill exercise improve histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries in athletes. However, there was not a synergistic effect when both treatments were combined, suggesting that PRP does not add any beneficial effect to exercise-based therapy in the treatment of injured skeletal muscle. Clinical Relevance: This study demonstrates the efficacy of an early active rehabilitation protocol or single intramuscular PRP injection on muscle recovery. The data also reveal that the outcome of the early active rehabilitation is adversely affected by the PRP injection when the two therapies are combined, and this could explain why PRP therapies have failed in randomized clinical trials where the athletes have adhered to postinjection rehabilitation protocols based on the principle of early, active mobilization.
    Original languageEnglish
    Pages (from-to)2131-2141
    JournalAmerican Journal of Sports Medicine
    Issue number9
    Publication statusPublished - 1 Jul 2017


    • PRP intramuscular injection
    • muscle healing
    • physical exercise therapy
    • rat model
    • skeletal muscle injury


    Dive into the research topics of 'Postinjury Exercise and Platelet-Rich Plasma Therapies Improve Skeletal Muscle Healing in Rats but Are Not Synergistic When Combined'. Together they form a unique fingerprint.

    Cite this