Polynomial functors and combinatorial Dyson-Schwinger equations

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)

Abstract

© 2017 Author(s). We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 1-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structures. Precisely, for any finitary polynomial endofunctor P defined over groupoids, the system of combinatorial Dyson-Schwinger equations X = 1 + P(X) has a universal solution, namely the groupoid of P-trees. The isoclasses of P-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+-operators. The solution to this equation is a series (the Green function), which always enjoys a Faà di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Faà di Bruno bialgebra. Varying P yields different bialgebras, and cartesian natural transformations between various P yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of P-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-Löf type theory (expounded elsewhere).
Original languageEnglish
Article number041703
JournalJournal of Mathematical Physics
Volume58
Issue number4
DOIs
Publication statusPublished - 1 Apr 2017

Fingerprint

Dive into the research topics of 'Polynomial functors and combinatorial Dyson-Schwinger equations'. Together they form a unique fingerprint.

Cite this