Plant community response to drought-induced canopy defoliation in a Mediterranean Quercus ilex forest

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)

Abstract

© 2014, Springer-Verlag Berlin Heidelberg. Climate change has increased drought-induced tree die-off in many parts of the world, and future climate models expect a higher recurrence of these perturbations. However, few studies have addressed plant community recovery after drought events, particularly in Mediterranean forests. This study evaluates the consequences of drought-induced die-off of the dominant holm-oak (Quercus ilex) trees on composition, structure and recruitment of the plant community, 6 years after a severe drought episode in Montserrat mountain (Catalonia, NE Spain). We evaluated the relationship of the vegetation response variables to two parameters related to the die-off consequences: canopy openness, as a measure of radiation arriving to ground, and canopy defoliation weighed by plant size, as a measure of drought impact on dominant neighbor plants. We also included in our analyses topographic situation to account for the proximity to ridge summits. Six years after the drought episode, the main findings were as follows: (1) There was a general loss of canopy cover, but Q. ilex still remained as dominant; nevertheless, the small tree Phyllirea latifolia and the shrub Buxus sempervirens tended to increase its relative abundance in the upper vegetation canopy; (2) overall, in open canopy conditions, species richness was higher mostly due to the presence of shade-intolerant herbaceous plants and early successional shrubs, such as Cistus albidus; (3) die-off did not result in increasing recruitment of the dominant species but preexisting Q. ilex sprouts were taller in sites with more open canopy; (4) there was a negative relationship between weighed defoliation and understory height, including Q. ilex sprouts, that can be attributed to large drought impact to both understory and canopy holm-oaks in some microhabitats, such as sites with abundant outcrops. This study highlights the ways in which Q. ilex Mediterranean forests regenerate after drought-induced events of canopy die-off. This regeneration involves changes in community structure and composition involving the increase in species, mostly small shrubs and herbaceous plants, which are able to grow in habitats created by canopy openness, likely becoming dominant in the landscape, as well as the arrival of non-dominant shrubs and short trees to the canopy. Potential shift in vegetation may be facilitated by the lack of increasing recruitment of Q. ilex, but this may be counterbalanced by the ability of holm-oak canopy to resprout and because pre-established saplings grown more with canopy openness. Thus, if tree canopies do not recover in a certain amount of time after the drought episode, then defoliation could lead to permanent changes in diversity and composition of the community.
Original languageEnglish
Pages (from-to)261-272
JournalEuropean Journal of Forest Research
Volume134
Issue number2
DOIs
Publication statusPublished - 1 Jan 2015

Keywords

  • Climate change
  • Defoliation
  • Die-off
  • Diversity
  • Extreme climatic events
  • Holm-oak
  • Mediterranean forests
  • Quercus ilex
  • Understory

Fingerprint Dive into the research topics of 'Plant community response to drought-induced canopy defoliation in a Mediterranean Quercus ilex forest'. Together they form a unique fingerprint.

Cite this