Piezoelectric 2D materials for bistable NEMS energy harvesters

Miquel López-Suárez, Miguel Pruneda, Riccardo Rurali, Gabriel Abadal

Research output: Contribution to journalArticleResearchpeer-review

Abstract

© 2014 Materials Research Society. The dynamics of one atom thick h-BN suspended nanoribbons have been obtained by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine type equation to explore their use as energy harvesting devices. Similarly to our previous proposal for a graphene-based harvester1, an applied compressive strain is used to drive the clamped-clamped nanoribbon structure into a bistable regime, where quasi-harmonic vibrations are combined with low frequency swings between the minima of a double-well potential. h-BN, graphene and MoS2 similar structures have been compared in terms of the static response to a compressive strain and of the dynamic evolution induced by an external noisy vibration. Due to its intrinsic piezoelectric response, the mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced non-linearity, the proposed device is predicted to harvest an electrical root mean square (rms) power of more than 180 fW when it is excited by a noisy external force characterized by a white Gaussian frequency distribution with an intensity in the order of Frms=5pN.
Original languageEnglish
JournalInternational Review of the Red Cross
Volume1701
Issue number1
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • energy generation
  • microelectro-mechanical (MEMS)
  • Piezoelectric

Fingerprint Dive into the research topics of 'Piezoelectric 2D materials for bistable NEMS energy harvesters'. Together they form a unique fingerprint.

Cite this