TY - JOUR
T1 - Pertussis prevention: Reasons for resurgence, and differences in the current acellular pertussis vaccines
AU - Esposito, Susanna
AU - Stefanelli, Paola
AU - Fry, Norman K.
AU - Fedele, Giorgio
AU - He, Qiushui
AU - Paterson, Pauline
AU - Tan, Tina
AU - Knuf, Markus
AU - Rodrigo, Carlos
AU - Olivier, Catherine Weil
AU - Flanagan, Katie L.
AU - Hung, Ivan
AU - Lutsar, Iria
AU - Edwards, Kathryn
AU - O'Ryan, Miguel
AU - Principi, Nicola
PY - 2019/1/1
Y1 - 2019/1/1
N2 - © 2019 Esposito, Stefanelli, Fry, Fedele, He, Paterson, Tan, Knuf, Rodrigo, Weil Olivier, Flanagan, Hung, Lutsar, Edwards, O'Ryan and Principi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Pertussis is an acute respiratory disease caused by Bordetella pertussis. Due to its frequency and severity, prevention of pertussis has been considered an important public health issue for many years. The development of the whole-cell pertussis vaccine (wPV) and its introduction into the pediatric immunization schedule was associated with a marked reduction in pertussis cases in the vaccinated cohort. However, due to the frequency of local and systemic adverse events after immunization with wPV, work on a less reactive vaccine was undertaken based on isolated B. pertussis components that induced protective immune responses with fewer local and systemic reactions. These component vaccines were termed acellular vaccines and contained one or more pertussis antigens, including pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN), and fimbrial proteins 2 (FIM2) and 3 (FIM3). Preparations containing up to five components were developed, and several efficacy trials clearly demonstrated that the aPVs were able to confer comparable short-term protection than the most effective wPVs with fewer local and systemic reactions. There has been a resurgence of pertussis observed in recent years. This paper reports the results of a Consensus Conference organized by the World Association for Infectious Disease and Immunological Disorders (WAidid) on June 22, 2018, in Perugia, Italy, with the goal of evaluating the most important reasons for the pertussis resurgence and the role of different aPVs in this resurgence.
AB - © 2019 Esposito, Stefanelli, Fry, Fedele, He, Paterson, Tan, Knuf, Rodrigo, Weil Olivier, Flanagan, Hung, Lutsar, Edwards, O'Ryan and Principi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Pertussis is an acute respiratory disease caused by Bordetella pertussis. Due to its frequency and severity, prevention of pertussis has been considered an important public health issue for many years. The development of the whole-cell pertussis vaccine (wPV) and its introduction into the pediatric immunization schedule was associated with a marked reduction in pertussis cases in the vaccinated cohort. However, due to the frequency of local and systemic adverse events after immunization with wPV, work on a less reactive vaccine was undertaken based on isolated B. pertussis components that induced protective immune responses with fewer local and systemic reactions. These component vaccines were termed acellular vaccines and contained one or more pertussis antigens, including pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN), and fimbrial proteins 2 (FIM2) and 3 (FIM3). Preparations containing up to five components were developed, and several efficacy trials clearly demonstrated that the aPVs were able to confer comparable short-term protection than the most effective wPVs with fewer local and systemic reactions. There has been a resurgence of pertussis observed in recent years. This paper reports the results of a Consensus Conference organized by the World Association for Infectious Disease and Immunological Disorders (WAidid) on June 22, 2018, in Perugia, Italy, with the goal of evaluating the most important reasons for the pertussis resurgence and the role of different aPVs in this resurgence.
KW - Acellular pertussis vaccine
KW - Bordetella pertussis
KW - Pertussis
KW - Whole-cell pertussis vaccin pertussis prevention
UR - http://www.mendeley.com/research/pertussis-prevention-reasons-resurgence-differences-current-acellular-pertussis-vaccines
U2 - https://doi.org/10.3389/fimmu.2019.01344
DO - https://doi.org/10.3389/fimmu.2019.01344
M3 - Review article
C2 - 31333640
SN - 1664-3224
VL - 10
SP - 1344
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - JUL
M1 - 1344
ER -