Abstract
This paper is devoted to the study of a type of differential systems which appear usually in the study of the Hamiltonian systems with two degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. AU these periodic orbits pass near to the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear three-body problem. © World Scientific Publishing Company.
Original language | English |
---|---|
Pages (from-to) | 2175-2183 |
Journal | International Journal of Bifurcation and Chaos in Applied Sciences and Engineering |
Volume | 17 |
DOIs | |
Publication status | Published - 1 Jan 2007 |
Keywords
- Charged 3-body problem
- Heteroclinic loop
- Periodic orbits