Paper strip-embedded graphene quantum dots: A screening device with a smartphone readout

Ruslan Álvarez-DIduk, Jahir Orozco, Arben Merkoçi

    Research output: Contribution to journalArticleResearchpeer-review

    33 Citations (Scopus)

    Abstract

    © 2017 The Author(s). Simple, inexpensive and rapid sensing systems are very demanded for a myriad of uses. Intrinsic properties of emerging paper-based analytical devices have demonstrated considerable potential to fulfill such demand. This work reports an easy-to-use, low cost, and disposable paper-based sensing device for rapid chemical screening with a smartphone readout. The device comprises luminescent graphene quantum dots (GQDs) sensing probes embedded into a nitrocellulose matrix where the resonance energy transfer phenomenon seems to be the sensing mechanism. The GQDs probes were synthesized from citric acid by a pyrolysis procedure, further physisorbed and confined into small wax-traced spots on the nitrocellulose substrate. The GQDs were excited by an UV LED, this, is powered by a smartphone used as both; energy source and imaging capture. The LED was contained within a 3D-printed dark chamber that isolates the paper platform from external light fluctuations leading to highly reproducible data. The cellulose-based device was proven as a promising screening tool for phenols and polyphenols in environmental and food samples, respectively. It opens up new opportunities for simple and fast screening of organic compounds and offers numerous possibilities for versatile applications. It can be especially useful in remote settings where sophisticated instrumentation is not always available.
    Original languageEnglish
    Article number976
    JournalScientific Reports
    Volume7
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2017

    Fingerprint Dive into the research topics of 'Paper strip-embedded graphene quantum dots: A screening device with a smartphone readout'. Together they form a unique fingerprint.

    Cite this