TY - JOUR
T1 - Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage
AU - Sulonen, Mira L.K.
AU - Baeza, Juan Antonio
AU - Gabriel, David
AU - Guisasola, Albert
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5/5
Y1 - 2021/5/5
N2 - Bioelectrochemical systems provide a promising tool for the treatment of acid mine drainage (AMD). Biological sulphate reduction powered with electrical energy consumes acidity and produces sulphide, which can precipitate metals. However, the produced sulphide and the changes in pH resulting from the biological processes affect the efficiency and the environmental impacts of this treatment significantly. In this work, the effects of pH and sulphur speciation on the sulphate reduction rate (SRR) and comprehensive AMD treatment were evaluated in two-chamber microbial electrolysis cells at a cathode potential of −0.8 V vs. NHE. The increase of initial sulphate concentration from below 1000 mg to above 1500 mg S-SO42–/L increased SRR from 121 ± 25 to 177 ± 19 mg S-SO42–/L/d. SRR further increased to 347 mg S-SO42–/L/d when the operation mode was changed from batch to periodical addition of sulphate and acidity (363 mg S-SO42–/L/d and 22.6 mmol H+/L/d, respectively). The average SRR remained above 150 mg S-SO42–/L/d even at pH above 8.5 and with the total dissolved sulphide concentration increasing above 1300 mg S-TDSu/L. Operation at pH above 8 enabled the recovery of over 90% of the sulphur as dissolved sulphide and thus assisted in minimising the formation and release of toxic H2S.
AB - Bioelectrochemical systems provide a promising tool for the treatment of acid mine drainage (AMD). Biological sulphate reduction powered with electrical energy consumes acidity and produces sulphide, which can precipitate metals. However, the produced sulphide and the changes in pH resulting from the biological processes affect the efficiency and the environmental impacts of this treatment significantly. In this work, the effects of pH and sulphur speciation on the sulphate reduction rate (SRR) and comprehensive AMD treatment were evaluated in two-chamber microbial electrolysis cells at a cathode potential of −0.8 V vs. NHE. The increase of initial sulphate concentration from below 1000 mg to above 1500 mg S-SO42–/L increased SRR from 121 ± 25 to 177 ± 19 mg S-SO42–/L/d. SRR further increased to 347 mg S-SO42–/L/d when the operation mode was changed from batch to periodical addition of sulphate and acidity (363 mg S-SO42–/L/d and 22.6 mmol H+/L/d, respectively). The average SRR remained above 150 mg S-SO42–/L/d even at pH above 8.5 and with the total dissolved sulphide concentration increasing above 1300 mg S-TDSu/L. Operation at pH above 8 enabled the recovery of over 90% of the sulphur as dissolved sulphide and thus assisted in minimising the formation and release of toxic H2S.
KW - Biocathode
KW - Bioelectrochemical systems
KW - Microbial electrolysis cell
KW - Neutralisation
KW - Sulphate reducing bacteria
UR - http://www.scopus.com/inward/record.url?scp=85098849777&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2020.124944
DO - 10.1016/j.jhazmat.2020.124944
M3 - Article
C2 - 33422754
AN - SCOPUS:85098849777
SN - 0304-3894
VL - 409
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 124944
ER -