Operational quantification of continuous-variable correlations

Carles Rodó, Gerardo Adesso, Anna Sanpera

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)

Abstract

We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such bit quadrature correlations majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography. © 2008 The American Physical Society.
Original languageEnglish
Article number110505
JournalPhysical Review Letters
Volume100
Issue number11
DOIs
Publication statusPublished - 21 Mar 2008

Fingerprint Dive into the research topics of 'Operational quantification of continuous-variable correlations'. Together they form a unique fingerprint.

Cite this