Online monitoring of myocardial bioprosthesis for cardiac repair

Cristina Prat-Vidal, Carolina Gálvez-Montón, Verónica Puig-Sanvicens, Benjamin Sanchez, Idoia Díaz-Güemes, Paco Bogónez-Franco, Isaac Perea-Gil, Anna Casas-Solà, Santiago Roura, Aida Llucià-Valldeperas, Carolina Soler-Botija, Francisco M. Sánchez-Margallo, Carlos E. Semino, Ramon Bragos, Antoni Bayes-Genis

Research output: Contribution to journalArticleResearchpeer-review

24 Citations (Scopus)

Abstract

Background/objectives The aim of this study was to develop a myocardial bioprosthesis for cardiac repair with an integrated online monitoring system. Myocardial infarction (MI) causes irreversible myocyte loss and scar formation. Tissue engineering to reduce myocardial scar size has been tested with variable success, yet scar formation and modulation by an engineered graft is incompletely characterized. Methods Decellularized human pericardium was embedded using self-assembling peptide RAD16-I with or without GFP-labeled mediastinal adipose tissue-derived progenitor cells (MATPCs). Resulting bioprostheses were implanted over the ischemic myocardium in the swine model of MI (n = 8 treated and n = 5 control animals). For in vivo electrical impedance spectroscopy (EIS) monitoring, two electrodes were anchored to construct edges, covered by NanoGold particles and connected to an impedance-based implantable device. Histological evaluation was performed to identify and characterize GFP cells on post mortem myocardial sections. Results Pluripotency, cardiomyogenic and endothelial potential and migratory capacity of porcine-derived MATPCs were demonstrated in vitro. Decellularization protocol efficiency, biodegradability, as well as in vitro biocompatibility after recellularization were also verified. One month after myocardial bioprosthesis implantation, morphometry revealed a 36% reduction in infarct area, Ki67+-GFP+-MATPCs were found at infarct core and border zones, and bioprosthesis vascularization was confirmed by presence of Griffonia simplicifolia lectin I (GSLI) B4 isolectin+-GFP+-MATPCs. Electrical impedance measurement at low and high frequencies (10 kHz-100 kHz) allowed online monitoring of scar maturation. Conclusions With clinical translation as ultimate goal, this myocardial bioprosthesis holds promise to be a viable candidate for human cardiac repair. © 2014 Elsevier Ireland Ltd.
Original languageEnglish
Pages (from-to)654-661
JournalInternational Journal of Cardiology
Volume174
Issue number3
DOIs
Publication statusPublished - 1 Jul 2014

Keywords

  • Adipose tissue derived progenitor cells
  • Decellularized pericardium
  • Myocardial bioprosthesis
  • Myocardial infarction
  • Swine model

Fingerprint Dive into the research topics of 'Online monitoring of myocardial bioprosthesis for cardiac repair'. Together they form a unique fingerprint.

Cite this