One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating

Christian Müller, Mahdieh Aghamohammadi, Scott Himmelberger, Prashant Sonar, Miquel Garriga, Alberto Salleo, Mariano Campoy-Quiles

    Research output: Contribution to journalArticleResearchpeer-review

    58 Citations (Scopus)

    Abstract

    The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Original languageEnglish
    Pages (from-to)2368-2377
    JournalAdvanced Functional Materials
    Volume23
    Issue number19
    DOIs
    Publication statusPublished - 20 May 2013

    Keywords

    • bulk-heterojunction
    • epitaxy
    • fullerene
    • nucleation
    • polymer semiconductors
    • spherulite

    Fingerprint Dive into the research topics of 'One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating'. Together they form a unique fingerprint.

    Cite this