Abstract
© 2016 Elsevier B.V. We study non-degenerate involutive set-theoretic solutions (X,r) of the Yang–Baxter equation, we call them solutions. We prove that the structure group G(X,r) of a finite non-trivial solution (X,r) cannot be an Engel group. It is known that the structure group G(X,r) of a finite multipermutation solution (X,r) is a poly-Z group, thus our result gives a rich source of examples of braided groups and left braces G(X,r) which are poly-Z groups but not Engel groups. We find an explicit relation between the multipermutation level of a left brace and the length of the radical chain A (n+1) =A (n) ⁎A introduced by Rump. We also show that a finite solution of the Yang–Baxter equation can be embedded in a convenient way into a finite left brace, or equivalently into a finite involutive braided group.
Original language | English |
---|---|
Pages (from-to) | 751-756 |
Journal | Journal of Pure and Applied Algebra |
Volume | 221 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2017 |