On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination

M. De La Sen, Ravi P. Agarwal, A. Ibeas, S. Alonso-Quesada

Research output: Contribution to journalArticleResearchpeer-review

55 Citations (Scopus)

Abstract

This paper discusses the disease-free and endemic equilibrium points of a SVEIRS propagation disease model which potentially involves a regular constant vaccination. The positivity of such a model is also discussed as well as the boundedness of the total and partial populations. The model takes also into consideration the natural population growing and the mortality associated to the disease as well as the lost of immunity of newborns. It is assumed that there are two finite delays affecting the susceptible, recovered, exposed, and infected population dynamics. Some extensions are given for the case when impulsive nonconstant vaccination is incorporated at, in general, an aperiodic sequence of time instants. Such an impulsive vaccination consists of a culling or a partial removal action on the susceptible population which is transferred to the vaccinated one. The oscillatory behavior under impulsive vaccination, performed in general, at nonperiodic time intervals, is also discussed. Copyright © 2011 M. De la Sen et al.
Original languageEnglish
Article number748608
JournalAdvances in Difference Equations
Volume2011
DOIs
Publication statusPublished - 22 Jun 2011

Fingerprint Dive into the research topics of 'On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination'. Together they form a unique fingerprint.

  • Cite this